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We analyse the instability dynamics of a nematic liquid crystal under steady plane Couette
flow. Weak anchoring for molecules of the nematic at the boundaries with an easy axis
perpendicular to the flow plane is assumed. Orientation of the director along the easy axis is
our basic state. Previously (Tarasov et al., 2001, Liq. Cryst. 28, 833), it was found that the
critical shear rate of the primary instability of the basic state strongly decreases with
anchoring strength. In the present study our interest was to examine the effect of the
anchoring strength on the nematic dynamics in the regime with a slightly supercritical shear
rate. It was found that for weaker anchoring the director rotates more strongly and the
relaxation time of the amplitude of the basic state perturbations significantly increases.
Results obtained can be used for experimental measurements of the anchoring strengths.

1. Introduction

Over recent decades, considerable efforts have been

directed at examining the anchoring of liquid crystals

(LCs) on solid surfaces with different morphologies. It

is now widely known that the character of the surface

interactions and LC ordering in the boundary layer

strongly influence (if not determine) the bulk dynamic

characteristics of the LC (orientation and relaxation/

switching times), which are extremely important for

optical devices [1, 2]. On the other hand, much less

information is available on the role of the surface forces

in pattern-forming instabilities, in particular, in the

pattern selection. Patterns in LCs under a hydrodyna-

mic flow, because of flow’s ubiquitous character, are of

special interest.

To extend our knowledge as to the role of anchor-

ing conditions in hydrodynamic instabilities in LCs,

we have turned to the dynamics of the (primary)

homogeneous instability under steady plane Couette

flow. The plane Couette flow is generated in a fluid

between two parallel plates moving along the same axis

with a certain constant velocity relative to each other.

We concentrate on the case when the director at the

bounding surfaces (substrates) is anchored perpendicu-

larly to the flow plane, i.e. the plane spanned by

the velocity of the primary flow and its gradient. For

symmetry reasons, this orientation together with the

linear velocity profile is the solution of the nemato-

dynamic equations [3, 4] for any shear rate. This is

our basic state. Such an orientation of the director

is generally unstable, but may be stabilized by

boundaries or external fields (for instance, a magnetic

field) [5].
Experimentally, this system for the nematic MBBA

has been investigated by Pieranski and Guyon [6, 7] in

the 1970s, and more recently by Boudreau et al. [8].

It was found that the basic state loses stability when a

flow with a critical shear rate sc is applied. For a zero

or sufficiently weak magnetic field applied parallel to

the initial director orientation, the homogeneous

instability occurs. The type of instability changes to

spatially periodic if the magnetic field is sufficiently

strong [6]. In this case one observes rolls parallel to

the flow direction. The mechanisms leading to the

homogeneous or roll instabilities are generally well

understood [6, 9]. The rolls are also observed in the

absence of the magnetic field well above the threshold

of the homogeneous instability [6]. The primary

instabilities were investigated theoretically by Leslie

[10] and Dubois-Violette and Manneville [9, 11–13].

The theoretical results were found to be in good

agreement with the experiments of Pieranski and

Guyon. Manneville has studied the dynamics of

the director slightly above the threshold of the

homogeneous instability [12]. He found that the

director rotation is proportional to the overcriticality*Author for correspondence; e-mail: tarasov@anrb.ru
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E~ s{scð Þ=sc½ �
1
2, where s is the shear rate. This has been

confirmed experimentally [8].

One has to note that theoretical investigations have

been performed under the assumption of strong

anchoring of the director at the substrates. Recently,

the homogeneous and spatially periodic instabilities

in a NLC subjected to steady plane Couette or

Poiseuille flow have been studied by means of a

linear stability analysis in the case of weak director

anchoring at the confining surfaces [14–16]. It has

been established that the critical shear rate reduces

with decreasing anchoring strengths. In the case of

Poiseuille flow of the nematic MBBA the variation

of the anchoring conditions can cause a crossover

between two types of homogeneous or spatially

periodic (roll) instabilities. In Couette flow of MBBA

no such crossover was found, but the situation changes

for slightly different material parameters [16]. These

results are indicative of the strong influence of the

anchoring conditions on the parameters of the

instability and the pattern selection. In turn, a flow

of oscillatory type was found to induce surface

orientational transitions [17].
Here we focus on NLC dynamics slightly above

the threshold of the homogeneous instability in

steady Couette flow, taking into account anchoring

conditions for the director. We formulate the problem

mathematically in § 2. Starting from the well known

Ericksen–Leslie equations [3, 4], we define the expan-

sion scheme and derive the equation for the amplitude

of the director and fluid velocity perturbations

from the basic state in § 3. In § 4 the data on the

relaxation time of the perturbation amplitude and the

rotation of the director as functions of the anchoring

strengths are presented and compared with available

experimental findings. We discuss the results and

conclude in § 5.

2. Formulation of the problem

We consider a NLC layer of thickness d sandwiched

between two parallel infinite plates. The origin of a

Cartesian coordinate system is placed at the centre of

the layer with the z-axis perpendicular to the bounding

plates. Steady Couette flow is generated by one plate (at

z~d/2) moving with constant velocity V 0 along the

x-direction and the other plate (at z~2d/2) fixed. The

spatially constant shear rate is s~V 0/d.

The confining plates provide the preferable director

orientation n0 along the y-axis (easy axis). In the case of

small director deviations n̂n~n{n0 at the substrates, the

energy costs of the distortion can be described by the

potential

Fs~
1

2
Wa n̂n2

x z
1

2
Wp n̂n2

z , Wa > 0, Wp > 0 ð1Þ

where Wp is a ‘polar’ anchoring strength related to

out-of-substrate-plane director deviations and Wa is an

‘azimuthal’ anchoring strength related to deviations

within the substrate plane.

The boundary conditions for the director perturba-

tions n̂n can be obtained from the surface torque balance

equation

+K22 n̂nx,z
z

dFs

d n̂nx

~0, +K11 n̂nz,z
z

dFs

d n̂nz

~0,

for z~+ d=2: ð2Þ

Here K11 and K22 are splay and twist elastic

constants, respectively. The notation f,z~hf/hz is used.

The basic state is given by the stationary homo-

geneous solution of the standard set of the nemato-

dynamic equations [3, 4]

n0~ 0, 1, 0ð Þ, v0~ v0
x, 0, 0

� �
ð3Þ

where v0
x~V0 1=2zz=dð Þ.

In what follows we consider the temporal evolution

of homogeneous perturbations to the solution (3) in the

form

n~n0z n̂nx , n̂ny , n̂nz

� �
, v~v0z v̂vx , v̂vy , v̂vz

� �
ð4Þ

where n̂ni and v̂vi (i~x, y, z) are functions of coordinate z

and time t. One notes, that in the homogeneous

problem, only x and z components of the director

perturbations and the y component of the velocity

perturbations are relevant. The equations for the other

components remain uncoupled. Moreover, from the

normalization condition n2~1 one has n̂ny~0. Let us

introduce the dimensionless quantities

~zz~
z

d
, ~tt~

t

td
, S~btds,

Vy~
b2btd

d
v̂vy , Nx~b n̂nx , Nz~ n̂nz

ð5Þ

with

b2~
a3

a2

K22

K11

1

b
, b~

g1

g3

ð6Þ

and orientational and viscous characteristic times

td~
{a2ð Þd2

K22
, tv~

rd2

g3

: ð7Þ

Here g1~(a3za4za6)/2, g3~a4/2, r is the mass density

of the nematic, ai are Leslie coefficients related to

viscosity and Kii are elastic constants. It is useful to

note that for the material parameters of MBBA [18]

and d~150 mm (parameters of the experiment [8], see
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below) the orientational relaxation time td<66102 s,

while tv<661024 s.{
It is convenient to express the shear rate as

S~a2, a2~
V 0td

d
b: ð8Þ

Further, the boundary conditions (2) and no-slip

boundary condition for the fluid velocity reduce to

+Nx,z
zwaNx~0

+Nz,z
zwpNz~0

Vy~0

ð9Þ

at z~¡1/2, where the dimensionless quantities

wa~Wad=K22, wp~Wpd=K11 ð10Þ
are introduced. In the limit of strong anchoring (wa,

wpp‘) one has Nx~Nz~0 at z~¡1/2, whereas for

torque-free boundary conditions (wa, wpp0)

Nx,z
~Nz,z

~0 at the boundaries. Since experimental

measurements show Wp changing from 1027 to

1023 J m22 [19], the dimensionless quantity wp is

ranged from 4 to 46104 for d~150 mm and MBBA

material parameters [18]. Azimuthal anchoring strength

Wa and, consequently, its dimensionless relative wa are

at least one order of magnitude smaller [19].

3. Analysis

Using expressions (4), the system of nematodynamic

equations [3, 4] can be written in the form

L
Lt

x~L Sð Þxzh x, Sð Þ ð11Þ

where x~(Nx, Nz, Vy)T, L is a linear differential

operator, the shear rate S represents the control

parameter and h is a non-linear part.

Renormalizing the velocity as Vy~(12b)Y [12] the

linear operator can be written

L~

S Lzz 0

Lzz bS 1{bð ÞSLz

0 { 1{bð ÞSLz { 1{bð ÞSLzz

0

B@

1

CA ð12Þ

where hzwh/hz and so on. Then the linear operator

becomes self-adjoint L~Lz.

Introducing a small parameter E~ S{Scð Þ=Sc½ �
1
2, we

define the expansion

x~Ex 1ð ÞzE2x 2ð ÞzE2x 3ð Þz . . .

S~SczES1zE2S2zE3S3z . . . :
ð13Þ

The critical slowing down inherent to the theory of

critical phenomena [20] suggests introducing relevant

time scales through

L
Lt

~E
L

Lt1
zE2 L

Lt2
z . . . ð14Þ

Substituting equations (13) and (14) into (11) one gets

at the first order in E the linear problem

L Scð Þx 1ð Þ~0: ð15Þ
The general solution of equation (15) is

x 1ð Þ~A t1, t2, . . .ð Þu ð16Þ
where A is an amplitude, as yet undetermined, and u is

the eigenvector obtained in [14], as well as the critical

shear rate Sc~a2
c . We give for reference the solution of

the linear problem corresponding to the relevant even

(symmetric) type (see [14] for details):

Nx~mpcosh aczð Þzcos aczð Þ{

{w{1
a wacosh ac=2ð Þzacsinh ac=2ð Þ½ �

mpzma

� �

Nz~{mpcosh aczð Þzcos aczð Þ

1{bð ÞY~mp 1{bð Þacsinh aczð Þz 1{bð Þacsin aczð Þz

zw{1
a wacosh ac=2ð Þzacsinh ac=2ð Þ½ �

mpzma

� �
a2

cbz:

ð17Þ

with

mp að Þ~
wp að Þcos ac=2ð Þ{acsin ac=2ð Þ

wp að Þcosh ac=2ð Þzacsinh ac=2ð Þ : ð18Þ

We retain, in the following, the notation for the

components of the linear problem solution as in

equations (17).

From the analysis of the equations at the second

order it follows that S1~0, hA/ht1~0 and x(2)~0.

Then, one may choose S2~Sc and one obtains at the

third order in E

L Scð Þx 3ð Þ~q 3ð Þ: ð19Þ

Clearly, the solvability condition

Suz, q 3ð ÞT~0 ð20Þ
has to be satisfied, where uz is the solution of the

adjoint problem

Lz Scð Þuz~0 ð21Þ
and the scalar product Sa, bT~

Ð 1=2

{1=2
ab dz. Since the

linear operator L is self-adjoint, one has uz~u. The

solvability condition (20) yields the equation for the

amplitude A.

The components of the inhomogeneity q(3) in

{MBBA material parameters at 25‡C [18]. Elastic constants,
10212 N: K11~6.66, K22~4.2, K33~8.61. Viscosities,
1023 N s m22: a1~218.1, a2~2110.4, a3~21.1, a4~82.6,
a5~77.9, a6~233.6. Mass density r~103 kg m23.
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equation (19) are given by

q
3ð Þ

1 ~{AScNzzA3p1zA,t2
1{lð ÞNx

q
3ð Þ

2 ~{AbScNxzA3p2zA,t2

1{l

l
b2bNz

q
3ð Þ

3 ~A 1{bð ÞScNx,z
zA3p3zA,t2

1{bð Þ tv

td
ScY{a03b2Nz,z

� �

ð22Þ

with

p1~ 1{k32ð Þ N2
z Nx,z

� �
,z
{Nx

1

b2
N2

x,z
zN2

z,z

� �
{

{
1

bb
NzV 2ð Þ

x,z
{ 1{k12z

1{l

b2b

� �
NxNzNz,zz

p2~
1

b2

k31{2k21ð ÞN2
x,z

Nz{
1

b
NxV 2ð Þ

x,z
{k31NzN

2
z,z

z

z
1

2
1{bð ÞSc

1

b2
N2

xzN2
z

� �
Y,z

z 1{k31{
1zl

l

� �
Nz,zz

N2
z

p3~
1{b

bb
NxV 2ð Þ

x,z

	 


,z
{

1{bð Þ2

b2b
Sc N2

xY,z

� �
,z

{

{
1

2
1{bz2a01
� �

Sc N2
z Nx

� �
,z

{

{ a02za03{a01
� �

1{bð Þb{1Sc N2
z Y,z

� �
,z

{
1

2

1{b

b2
Sc N3

x

� �
,z

ð23Þ

where (Nx, Nz, Y) are from equations (17), g’i~gi/g3,

a’i~ai/g3, l~a3/a2 and kij~Kii/Kjj. The velocity V
2ð Þ

x

can be found from the uncoupled x component of the

Navier–Stokes equation at the second order in E:

V 2ð Þ
x,z

~C0{
1{b

b
NxNz,zz

{bbSc g02{1
� �

N2
z : ð24Þ

The coefficient C0 is determined from boundary

conditions for the velocity V
2ð Þ

x z~+1=2ð Þ~0:

C0~
1{b

b

ð1=2

{1=2

NxNz,zz
dzzbbSc g02{1

� � ð1=2

{1=2

N2
z dz: ð25Þ

Introducing a new amplitude B~EA from the

solvability condition (20) one gets

tBB,t~
S{Sc

Sc
B{gB3: ð26Þ

The amplitude equation (26) is the central result of

the present study. The coefficients in equation (26) are

expressed via

tB~
a1

a2
, g~

a3

a2
ð27Þ

with

a1~ 1{lð Þ 1zk21ð ÞSNx, NzT{

{ 1{bð Þ tv

td
ScSY , YT{a03b2SY , Nz,z

T

a2~ScSNz, NzTzbSNx, NxT{ 1{bð ÞSY , Nx,z
T

a3~SNz, p1TzSNx, p2TzSY , p3T:

ð28Þ

All ai occurring are positive for w{1
a and w{1

p smaller

than one. The magnitudes are a1yO(1), a2yO(10) and

a3yO(103).

Equation (26) describes the dynamics of the director

and the fluid velocity slightly above the threshold of the

homogeneous instability:

n~n0zBnlin, v~v0zBvlin ð29Þ
where nlin, vlin is the solution of the linear problem (17)

in physical units.

4. Results and comparison with experiment
Recent conoscopic observations of the nematic

MBBA under steady shear flow [8] provide data for a

comparison with theoretical results. Let us introduce a

twist angle w and a splay angle h in the following way:

nx~cosh cosw, ny~cosh sinw, nz~sinh: ð30Þ
Then, the twist angle w~tan21 (ny/nx) and the splay

angle h~sin21 nz. For small perturbations of the basic

Figure 1. Twist and splay relaxation of the director. Symbols
are experimental data from [8], solid and dashed lines are
theoretical calculations for 90‡2wm and hm, respectively.
Rigid boundary conditions are assumed in the
calculations.
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state (4) one has

p=2{w& n̂nx , h& n̂nz : ð31Þ

From the analysis of the conoscopic images it is

possible to extract the angles wm~w(z~0) and

hm~h(z~0) [21]. In figure 1 the twist and splay

relaxation of the director after cessation of the shear

flow with slightly supercritical shear rate is presented.{
Symbols are experimental points from [8], lines are

theoretical data calculated for rigid boundary condi-

tions. Fitting of the experimental data to an exponen-

tial gives relaxation times tw<46.0 s and th~29.5 s for

wm and hm, respectively (one can see in figure 1 that on

the logarithmic scale the lines for wm and hm are not

parallel, at least for initial times). The reason for the

difference in twist and splay relaxation times is unclear.

In the framework of the amplitude equation approach

the time relaxation is the same for both components of

the director (i.e. for both angles wm and hm) and the

velocity. From equations (27) and (28) it follows that

for MBBA material parameters [18], the LC layer

thickness d~150 mm and strong anchoring for the

director tB<48.4 s, which is in good agreement with the

relaxation time of wm.

It is interesting to investigate the ratio of the director

component perturbations [or twist and splay angles due

to expressions (31)], which is independent of the

overcriticality E, since n̂nx and n̂nz are parts of the

eigenvector of equation (15). Using equations (31) and

(17) one has for the angles in the middle of the layer

p

2
{wm

hm
~

1

b

1zmp

1{mp
{

wacosh ac=2ð Þzacsinh ac=2ð Þ
wa

:mpzma

1{mp

� �
:

For rigid boundary conditions this ratio constitutes

<11.7, which is in good agreement with experimental

data [8], giving <12 for times tw30 s (see figure 1). For

weaker anchoring the ratio (32) slightly changes and

approaches <12.6 with wa, wpp0.
In contrast, the relaxation time tB appears to be

strongly influenced by the anchoring strengths wa and

wp. Strong anchoring conditions give the lower limit for

tB. In figure 2 the dependence of tB on wa and wp is

presented. The relaxation time increases with decreasing

anchoring strengths and changes its magnitude by

almost a factor of five in the range of wa and wp shown

Figure 2. The (dimensionless) relaxation time tB (27) vs.
anchoring strengths: d~150mm, for material parameters
of MBBA see [18].

Figure 3. Twist angle wm vs. anchoring strengths for E2~0.1:
d~150 mm, for MBBA material parameters see [18].

Figure 4. Splay angle hm vs. anchoring strengths for E2~0.1:
d~150 mm, for MBBA material parameters see [18].

{An exact value of the critical shear rate is not reported in [8],
but from the presented graphs it can be estimated by
interpolating the data to be about 0.14–0.15 s21. From our
calculations for the parameters of this experiment (d~150 mm,
MBBA material parameters [18]) it follows that the critical
shear rate is <0.19 s21.

(32)
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in figure 2. Clearly, such a large variation of the

relaxation time could easily be detected experimentally.

The stationary solutions of equation (26) can be used

to calculate the orientation of the director for a given

overcriticality E. These solutions have been studied by
Manneville for strong anchoring conditions [12]. For

the case of weak anchoring the turning angles wm and

hm versus w{1
a and w{1

p are presented in figures 3 and 4,

respectively. One can see that the twist angle wm for

large wa and wp is mainly controlled by the azimuthal

component wa of the anchoring strength: for large wa

the angle wm remains almost unchanged as wp varies

(figure 3). For the splay angle hm the situation is
reversed (figure 4). The variation of the turning angles

with the anchoring strengths is well pronounced.

5. Conclusions

The study of the relaxation of the perturbation

amplitude after cessation of Couette flow with slightly

overcritical shear rate presented here makes it clear that

changes to the anchoring strengths wa and wp lead to
strong variation of the relaxation time tB. This effect

can be used to obtain a reliable estimate of the

anchoring strengths in addition to the effect of a

reduction of the critical shear rate under weak

anchoring conditions. Since tB is a monotonic function

for each of wa and wp (see figure 2) it is sufficient to

measure the relaxation time once in order to calculate

both components of the anchoring force. The changes
in the director turning angles wm and hm obtained by

varying the anchoring strengths can also be used for

experimental measurements of wa and wp, although this

effect is not as strong as in the case for the relaxation

time tB. In the practically important range

w{1
a , w{1

p v0:25 (for LC layer thickness d~150 mm)

modern experimental techniques are powerful enough

to resolve small variations (several degrees) of these
angles with wa and wp.

It is now known that for a slightly different set of LC

material parameters the primary instability can change

its type and become spatially periodic [16], which is

analogous to the case of MBBA with a strong enough

magnetic field applied perpendicular to the flow plane.

This means that there exist two ‘dangerous’ modes with

similar growth rates near the transition from one type
of instability to another. It would be particularly

interesting to investigate the orientational dynamics of

a LC in a weakly non-linear regime in the region of

these parameters by means of an extended weakly non-

linear analysis [22]. This work is intended for the future.
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